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ABSTRACT

The paper summarizes the development by the author of unstructured-grid methods for the solution of the

equations of fluid flow and shares what has been learned over the course of the research. The focus of the discussion

is on the solution of the time-dependent Euler equations including spatial discretizations, temporal discretizations,

and boundary conditions. An example calculation with an implicit upwind method using a CFL number of infinity

is presented for the Boeing 747 aircraft. The results were obtained in less than one hour CPU time on a Cray-2
computer, thus demonstraung the speed and robustness of the capability. Addifonal calculations for the ONERA

M6 wing demonstrate the accuracy of the method through the good agreement between calculated results and
experimental data for a standard transonic flow case.

INTRODUCTION

The development of unstructured-grid methods for the solution of the equations of fluid flow has become

quite popular in recent years because of the advantages that these methods offer in comparison with the more-

traditional structured-grid methods [1-24]. For example, with an unstructured grid, it is relatively easy to model

very complicated three-dimensional geometries such as a complete aircraft configuration. With a structured grid, it is

generally much more difficult to achieve this level of geometrical complexity without resorting to more sophisticated
meshing methodologies (such as blocked, patched, chimera, or hybrid type grids), which in turn, significantly

complicate the solution algorithm of the governing fluid flow equations. A second advantage is that unstructured

grid methods enable, in a natural way, adaptive mesh refinement to more accurately predict the physics of the flow.
These methods involve enrichment and coarsening procedures, either to add points in high gradient regions of the

flow or to remove points where they are not needed, and thereby to produce solutions of high spatial accuracy at

minimal computational cost. Furthermore, analogous to spatial adaption, a temporal adaption technique may be used

on an unstructured grid to improve the computational efficiency of explicit time-marching schemes for unsteady
aerodynamic applications. Temporal adaption can be thought of as time-accurate local time stepping. With this

procedure, each grid cell is integrated according , the local flow physics and numerical stability. Time accuracy is

maintained by bringing all cells to the same time level as determined by the step size of the largest cell.

The author has been involved over the past five years in the development of unstructured-grid methods for the

solution of the time-dependent Euler and Navier-Stokes equations [11-24]. These methods are being developed
primarily for unsteady aerodynamic and aeroelastic applications. As a result of developing and testing a variety of

methods, much knowledge and experience has been gained. Therefore the purpose of the paper is to summarize

this developmental effort and to share what has been learned over the course of the research. It is emphasized,

however, that the views presented are those of the author, which are not necessarily consistent with the views
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of other researchers. Differences in opinion over the best choice of method, for example, may result due to the

unsteady application of the present methods. The focus of the discussion is on the solution of the time-dependent

Euler equations including spatial discretizations, temporal diseretizations, and boundary conditions. Both central-

difference and upwind-type spatial discretizations are described in the context of both cell-vertex and cell-centered

implementations. Explicit and implicit temporal discretizations are also discussed along with methods to accelerate

convergence to steady state. Strong and weak implementations of the surface boundary conditions and far field

conditions are further described. Finally, example applications are presented to illustrate the various methods.

EULER EQUATIONS

In the present study the flow is assumed to be governed by the time-dependent Euler equations which may be

written in integral form as

O / QdV + / (Enx + Fnv + Gn')dS = OOt
fl off

(1)

where Q is the vector of conserved variables, and E, F, and G are the convective fluxes. Equation (1) has been

nondimensionalized by the freestream density and the freestream speed of sound. Also, the second integral in

Eq. (1) is a boundary integral resulting from application of the divergence theorem, and _**,n_, and nz are Cartesian

components of the unit normal to the boundary surface.

SPATIAL DISCRETIZATIONS

In general, the Euler equations in integral form have been solved numerically using several different finite-

volume spatial discretizations on unstructured grids of triangular or tetrahedral cells [11, 13, 16, 18, 21]. These

discretizations are either of the central-difference type with explicit artificial dissipation or of the upwind-type which

are naturally dissipative.

Central-Difference Algorithms

Central-difference type algorithms may be implemented as either cell-vertex (node-based) or cell-centered

discretizations. In the cell-vertex approach, the flow variables are stored at the nodes and the control volume

at a given node is typically taken to be all of the neighboring cells which have a vertex at that node, as illustrated

in two dimensions by Fig. 1. In the cell-centered approach, the flow variables are stored at the centroids of the

cells and the control volume is simply the cell itself. In three dimensions, it is noted that tetrahedral meshes contain

between five and six times the number of cells as nodes. Consequently, a cell-centered scheme is inherently five to

six times more costly in terms of CPU time and memory than a cell-vertex scheme. However, for a given mesh,

the cell-centered scheme is expected to produce a more accurate solution spatially since it is effectively solving the

problem with five or six times the number of control volumes as the cell-vertex scheme. In either case, the spatial

discretization involves a flux balance where the fluxes are computed along each face that makes up the control

volume using flow variables that have been averaged. The averaged flow variables are determined using values at

the three nodes which make up a given face for the cell-vertex approach and using values at the centroids of the

two tetrabedra that share a given face for the cell-centered approach.

The unsteady Euler equations are a set of nondissipative hyperbolic conservation laws whose numerical solution

requires some form of artificial dissipation to prevent oscillations near shock waves and to damp high frequency

uncoupled error modes. Generally, a combination of harmonic and biharmonic operators is used, corresponding to

second and fourth differences of the conserved variables, respectively. The simplest way to compute a harmonic

operator in the cell-vertex approach, for example, is to sum the difference in flow variables over all edges which
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have a common vertex at node i, given by

M

m=l

(2)

The biharmonic operator can be approximated similarly by applying Eq. (2) twice. An example application of

this form of artificial dissipation in the cell-vertex approach is shown in Fig. 2 for the NACA 0012 airfoil at a

freestmam Mach number Moo of 0.8 and an angle of attack cr0 of 1.25 ° [11 ]. This simple treatment of the artificial

dissipation works reasonably well for meshes that are "regular" (smooth meshes with little distortion, and a similar

number of edges share each node at nearly equal angles, etc.) although the shock waves are smeared typically over

several cells. For meshes that are not regular or when spatial adaption is used (naturally leading to highly irregular

meshes), however, Eq. (2) does not work well. In these cases a more accurate treatment of the dissipative operators

is required such as that given by

M

V_Qt _ _ w,.(Qm - Q_)
m----|

(3)
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where the weights wm have been derived by a constrained optimization so that Eq. (3) is exact for a linearly varying

Q (thus implying second-order spatial accuracy) [25].

Advantages of the central-difference type discretization are that it is easier to code and requires less memory

than an upwind discretization. However, the difficulties in calculating accurately the artificial dissipation on irregular

unstructured grids suggest that an upwind discretization may be more desirable. Also, the cell-centered approach has

advantages in comparison with the cell-vertex approach. For example, the cell-centered scheme vectorizes naturally

(no special coding is required) whereas the flux balance in a cell-vertex scheme involves vector recurrences which
inhibit vectorization. To avoid vector recurrences and allow vectorization, cell-vertex schemes require that the cells

be sorted into groups, such that not more than one cell in a group accesses a given node. The additional coding

that is required to accomplish this is somewhat unwieldy and increases the computational cost of the cell-vertex

approach. Consequently, the cost of a cell-vertex method is actually closer to the cost of a cell-centered method

than the factor of five to six difference in control volumes would suggest.

Upwind Algorithms

Upwind type algorithms also have been implemented as either cell-vertex or cell-centered discretizations. In

the cell-vertex approach, the flow variables are stored at the nodes and the control volume is typically taken to be

part of the neighboring cells which have a vertex at that node. In two dimensions, the part of the cells taken is

determined by connecting the centroid of the cell with the midpoints of the two edges which share the node as

shown in Fig. 3. An example application of this form of upwind-difference type algorithm is shown in Fig. 4 for

the NACA 0012 airfoil at the same freestream flow conditions as before [11]. Here though, the shock waves are

more sharply captured because of the upwind discretization of the governing flow equations. For the cell-vertex

approach in three dimensions, the part of the cells taken for the control volume is determined by a surface that is

constructed similarly. However, this is quite complicated geometrically to do in three dimensions, and since these

surfaces (and their corresponding unit normals and areas) have to be recomputed at each time step when the mesh

deforms for unsteady cases, the cell-vertex approach is not the preferred method. In the cell-centered approach, the
flow variables are stored at the centroids of the cells and the control volume is simply the cell itself.

Cell-centered, upwind, spatial discretizations have been developed [16, 18, 22] based on either the flux-vector

splitting (FVS) of van Leer 126] or the flux-difference splitting (FDS) of Roe [27]. The FDS approach is generally

preferable since it is less dissipative than FVS and is easier to code. Similar to the central-difference algorithms, the

upwind algorithms involve a flux balance where the fluxes along the four faces of a given tetrahedron are summed as

4 4

HAS = _ (Enz + Fnv + Gnz)AS (4)
m=l m----!

where AS is the area of the face. With FDS the flux vector H is approximated by

U = IIH(Q+) + H(Q-) - h (Q+ - Q-)] (5)

where Q- and Q+ are the state variables to the left and right of the cell face and A is the flux Jacobian matrix

given by OH/tgQ. Also the tilde and the absolute value sign indicate that the flux Jacobian is evaluated using the

so-called Roe-averaged flow variables and the absolute value of the characteristic speeds. The left and right states

Q- and Q+ are determined by upwind-biased interpolations of the primitive variables q, similar to that which is
done on structured meshes.

A significant advantage of the upwind type discretization is that it is naturally dissipative, in comparison with

central difference discretizations, and consequently does not require adjustment of free parameters to control the

dissipation. The upwinding accounts for the local wave-propagation characteristics of the flow and captures shock

waves sharply. To demonstrate the sharp shock-capturing features of the cell-centered upwind approach, steady and

unsteady results are presented for the NACA 0012 airfoil. The steady calculation was performed for Moo = 0.8
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Steady pressure coefficient distribution for the NACA 0012 airfoil at M,,_ = 0.8

and so = 1.25 ° computed using the cell-centered FDS algorithm.
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Fig. 6 Instantaneous pressure distributions for the NACA 0012 airfoil pitching harmonically at .M_ = 0.755,

c_0 = 0.016°,cq = 2.51 °, and k = 0.0814 computed using the cell-centered FDS algorithm.

and s0 = 1.25 ° with the resulting pressure distribution shown in Fig. 5. The shocks are sharply captured with only

one grid point within the shock structure on either surface. Additionally, these sharp shock capturing features of the

upwind method carry over to unsteady cases as well. For example, for the NACA 0012 airfoil pitching harmonically

at M_ = 0.755, cr0 = 0.016 °, with an oscillation amplitude of c_z = 2.51 ° at a reduced frequency of k = 0.0814,

instantaneous pressure distributions at eight points in time during a cycle of motion are shown in Fig. 6. This is a

very interesting case since the shock waves on the upper and lower surfaces of the airfoil periodically appear and
disappear during the cycle of motion. It is clear from the results of Fig. 6 that, similar to the steady-state example,

the calculated shock waves are captured sharply with only one point within the shock structure.

TEMPORAL DISCRETIZATIONS

The Euler equations have been integrated in time numerically using several different temporal discretizations

[11, 13, 16, 18, 21]. These discretizations are either of the explicit type, along with several techniques to accelerate
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convergence to steady state, or of the implicit type, which generally do not require such additional techniques for

rapid convergence to steady state.

Explicit Algorithm

The explicit algorithm that has been developed for use on unstructured meshes is the standard multi-stage Runge-

Kutta time-integration scheme. In this scheme the flux balance is determined at each stage and, for computational

efficiency, the artificial dissipation of the central-difference spatial discretization is evaluated only at the first stage.

The scheme is second-order-accurate in time and includes the necessary terms to account for changes in cell areas

or volumes due to a moving or deforming mesh. Furthermore, this explicit-scheme has a step size that is limited by

the Courant-Friedricks-Lewy (CFL) condition. To accelerate convergence to steady-state, the CFL number may be

increased by averaging implicitly the residual with values at neighboring grid points. These implicit equations are

solved approximately using several Jacobi iterations. Convergence to steady-state is further accelerated by local time

stepping and, when using a central-difference type spatial discretization, by enthalpy damping. Enthalpy damping is

normally not used with upwind spatial discretizations since these discretizations generally do not preserve enthalpy.

Advantages of the explicit type time integration are that it is simple to code and requires far less memory

than an implicit time integration. Furthermore, when a central-difference spatial discretization is also employed,

the convergence to steady state is fairly rapid and solutions are obtained with minimal computational resources.

However, when finer meshes are used, either globally fine or locally fine due to spatial adaption, the rate of

convergence slows dramatically. When an upwind spatial discretization is employed, the rate of convergence also

is poor. What is required typically for rapid convergence on fine meshes is a multigrid strategy. Alternatively,

an implicit temporal discretization may he used, especially since an implicit time integration is generally desirable

for unsteady applications.

Implicit Algorithm

The implicit algorithm that has been developed for use on unstructured meshes is based on the cell-centered,

upwind, spatial discretization. The algorithm is derived in general by first linearizing the flux vector II according to

OH A
II "+1 = H n +-ff_ Q (6)

where OH/OQ is the flux Jacobian A, as discussed before, and AQ = Qn+1 _ Qn. Linearizing both flux terms on

the right hand side of Eq. (5) using Eq. (6), and ignoring the tilde on the flux Jacobian, results in

4

] a 1 4[ I ]"
[VOll _ II(Q+) +H(Q_)_ A (Q+-Q-) AS
[&-/ + ,,,=lE A+(Qi )AS AQj + ,,_=1EA-(Qm)ASAQm = -2 ,n=l

(7)

where I is the identity matrix, "vol" is the volume of the tetrahedron j, and AQm is the change in flow variables

in each of the four tetrahedra adjacent to tetrahedron j. Also in Eq. (7) A + and A- are forward and backward

flux Jacobians, respectively. For flux-difference splitting, the exact Jacobian A (derivative of the right-hand side of

Eq. (5) with respect to Q) is too expensive to compute and thus an approximate Jacobian is normally used. This is

accomplished by constructing the Jacobians making use of the fact that the forward and backward Jacobians should

have non-negative and non-positive eigenvalues (characteristic speeds), respectively.

A similar implicit temporal discretization, that is more efficient than the discretization of Eq. (7), is derived by

linearizing the flux vector of the quasi-linear form of the Euler equations with respect to the primitive flow variables.

This approach results in an equation similar to that of Eq. (7) given by

vole 4 ] 4 B_I 4 A n+ E a+(q.i)AS Aqj + E a-(qm)ASAqm - 2 E [It(Q+) + "(Q-) - (Q+ - Q-)] ASS7
m=l m=l ra=l

(8)



where the matrix B relates the time derivative of Q to the time derivative of q as simply

OQ Oq
0t - B_-_ (9)

The discretization represented by F,q. (8) is more efficient than the discretization represented by Eq. (7) because

the flux Jacobians a + and a- are simpler mathematically and therefore faster to compute than the flux Jacobians

A + and A-.

Direct solution of the system of simultaneous equations which results from application of Eq. (8) for all tetrahedra

in the mesh requires the inversion of a large matrix with large bandwidth which is computationally expensive.

Instead, a Gauss-Seidel relaxation approach is used m solve 'he equations whereby the summation involving _qm

is moved to the right hand side of Eq. (8). The terms in th_ _ummatioa are then evaluated for a given time step

using the most recently computed values for Aqm. The solution procedure then involves only the inversion of a

5 × 5 matrix (represented by the terms in square brackets on the left hand side of Eq. (8)) for each tetrabedron

in the mesh. The method is implemented by re-ordering the list of tetrabe&a that make up the unstructured mesh

from upstream to downstream, and the solution is obtained by sweeping two times through the mesh as dictated by

stability considerations. The first sweep is performed in the direction from upstream to downstream and the second

sweep is from downstream to upstream.

Advantages of the implicit type time integration are that it is numerically stable for very large CFL numbers, even

on very fine meshes, and consequently enables rapid convergence to steady-state. Also, for unsteady applications the

implicit discretization allows the selection of the step size based on the physical problem rather than on numerical

stability considerations. This is in contrast with an explicit time integration which has a restrictive step size for

unsteady applications which is more severe on finer meshes. A disadvantage of the implicit Gauss-Seidel relaxation

procedure is that it requires twice the memory of the explicit Runge-Kutta integration, primarily due to having to

store the backward flux Jacobian A- (or a-). Also, the linearization and relaxation errors associated with the implicit

method may be too large for a given step size and thus contaminate the solution. To illustrate this problem, Fig. 7

shows the effects of step size on instantaneous pressure distributions using the Gauss-Seidel relaxation procedure.

The calculations are for the same pitching NACA 0012 airfoil case presented in Fig. 6. Here though, three sets

of results were obtained corresponding to using 250, 1000, and 2500 steps per cycle of motion. The figure shows

the instantaneous pressure distribution at one instant of time (instantaneous angle of attack o(r) = 2.34 ° which is

69 ° (k'r) into a cycle of motion). These results indicate that large errors in the strengths and locations of the shock

waves on the upper and lower surfaces of the airfoil can occur when too large a time step is used (corresponding

to 250 steps per cycle). However, when an appropriately small step size is used (corresponding to 2500 steps per

cycle), the correct solution is obtained with a shock of moderate strength on the upper surface and subcritical flow

(no shock wave) about the lower surface.

a(¢) - 2.34*
k't- 69 °

I. rfaee

-,.o[-[ 250 steps/cycle 1,000, steps/cycle-1.5L_ t
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Fig. 7 Effects of step size on the instantaneous pressure distribution at kr = 69 ° (corresponding to or(r) = 2.34 °) for the

NACA 0012 airfoil pitching harmonically at .M_ = 0.755, O_o= 0.016 °, oq = 2.51 °, and

k = 0.0814 computed using the cell-centered FVS algorithm.



Pig. 8 Surface mesh of triangles for the Boeing 747 aircraft.

Fig. 9 Steady pressure coefficient contours on the Boeing 747 aircraft at Moo = 0.84

and _o = 2-73 ° computed using the implicit cell-centered FDS algorithm.

BOUNDARY CONDITIONS

To impose the flow tangency boundary conditions along solid surfaces in the cell-centered, upwind spatial

discretization method, the flow variables are set within dummy cells that are effectively inside the geometry being

considered. The velocity components within the dummy cells are determined from the values in the cell adjacent

to the surface. This is accomplished by first rotating the components into a coordinate system that has a coordinate

direction normal to the boundary face. The sign of the velocity component in this direction is changed (hence

imposing no flow through the face) and the three velocity components are then rotated back into the original z, y, z

coordinate system. Also, pressure and density within the dummy cell are set equal to the values in the cell adjacent

to the surface.

After application of the upwind-biased interpolation formula to determine q- and q+ at each face, the velocity

components are corrected to give a "strong" implementation of the surface boundary condition according to



Ucorrect_d = u -- nx(unz + vny + wnz)

Vcorrectcd = v- ny(unx + vny + wn:)

Wco_r,_t_d = w -- nz(unz + vn v + wnz)

(10)

In the far field a characteristic analysis based on Riemann invariants is used to determine the values of the

flow variables on the outer boundary of the grid. This analysis correctly accounts for wave propagation in the far

field, which is important for rapid convergence to steady state and serves as a "nonreflecting" boundary condition

for unsteady applications.

RESULTS AND DISCUSSION

To demonstrate the speed and robustness of the cell-centered, upwind, implicit solution algorithm, calculations

were performed for the Boeing 747 aircraft [21]. The results were obtained using the unstructured mesh shown in

Fig. 8. The geometry includes the fuselage, the wing, horizontal and vertical tails, underwing pylons, and flow-

through engine nacelles. The mesh contains 101,475 tetrahedra and 19,055 nodes for the half-span airplane. Also

there are 4,159 nodes and 8,330 triangles on the boundaries of the mesh which include the airplane, the symmetry

plane, and the far field. Steady-state calculations were performed for the aircraft at _Afoo = 0.84 and o0 = 2.73 °.

The results were obtained using a CFL number of infinity and the flux Jacobians were updated only every twenty

iterations. The solution required approximately 3,420 CPU seconds (662 iterations) on the Cray-2 computer (Navier)

at the Numerical Aerodynamic Simulation Facility, NASA Ames Research Center, to converge the solution to plotting

accuracy (taken to be a four order-of-magnitude reduction in the L2-norm of the density residual). The resulting

steady pressure coefficient contours on the surface of the aircraft are shown in Fig. 9. The contours indicate that

there is a significant amount of flow compression on the nose of the aircraft, along the inboard leading edge of the

wing, and inside the cowl of the engine nacelles. There is flow expansion on the forward fuselage, on the horizontal

and vertical tail surfaces, and on the upper surface of the wing terminated by a shock wave.

To demonstrate the accuracy of the cell-centered, upwind, implicit solution algorithm, calculations were

performed for the ONERA M6 wing [22]. The results were obtained using three meshes of increasing fineness

as shown in Fig. 10. The meshes, referred to as Mesh 1, 2, and 3, have 47,344, 98,317, and 288,170 tetrahedra,

respectively. Steady-state calculations were performed for the wing at Mo_ = 0.84 and (_0 = 3.06 ° using a CFL

number of infinity. The resulting steady pressure coefficients are shown in Fig. 11 including comparisons with

experimental data 128]. For this case, a double shock wave occurs on the upper surface of the wing which coalesces

into a single, relatively strong shock near the wing tip. Results for all three meshes show good agreement with

each other aft of the 70 percent chord line on the upper surface, and aft of the 25 percent chord line on the lower

surface. As is expected, the pressure coefficients obtained using Mesh 3 show the sharpest resolution of the shock

waves and agree best with the experimental data.

CONCLUDING REMARKS

The paper summarized the development by the author of unstructured-grid methods for the solution of the

equations of fluid flow and shared what has been learned over the course of the research. The focus of the

discussion was on the solution of the time-dependent Euler equations including central-difference and upwind-

type spatial discretizations, explicit and implicit temporal discretizations, and strong and weak implementations of

boundary conditions. A best choice of methods, in the opinion of the author, is a cell-centered, upwind, implicit

solution algorithm. An example calculation with this algorithm, using a CFL number of infinity, was presented for

the Boeing 747 aircraft. The results were obtained in less than one hour CPU time on a Cray-2 computer, thus

demonstrating the speed and robustness of the capability. Additional calculations for the ONERA M6 wing, also

obtained using a CFL number of infinity, demonstrated the accuracy of the method through the good agreement

between the calculated results and experimental data for a standard transonic flow case. Further results for unsteady
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Mesh I Mesh 2 Mesh 3

Fig. 10 Surface triangularizations from the ONERA M6 wing meshes.
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Fig. 11 Comparison of calculated and measured steady pressure coefficients on the ONERA M6 wing

at .M,_ = 0.84 and c_0 = 3.06 ° computed using the implicit cell-centered FDS algorithm.

aerodynamic and aeroelastic cases which demonstrate time-dependent applications of the methods are presented in

let's. [11-16, 19, 20, 23, 241.
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